Thermally-Enhanced High Power RF LDMOS FET 80 W, 28 V, 2110 - 2170 MHz

Description

The PTFB210801FA LDMOS FET is designed for use in multi-standard cellular power amplifier applications in the 2110 to 2170 MHz frequency band. Features include input and output matching, high gain and thermally-enhanced packages with earless flanges. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PTFB210801FA
Package H-37265-2

Features

- Broadband internal matching
- Typical single-carrier WCDMA performance at $2170 \mathrm{MHz}, 28 \mathrm{~V}$
- Average output power $=25 \mathrm{~W}$
- Linear Gain $=18.5 \mathrm{~dB}$
- Efficiency = 32.5\%
- Adjacent channel power $=-37 \mathrm{dBc}$
- Typical CW performance, $2170 \mathrm{MHz}, 28 \mathrm{~V}$
- Output power at $P_{1 d B}=80 \mathrm{~W}$
- Efficiency = 55\%
- Integrated ESD protection
- Capable of handling 10:1 VSWR @ 28 V, 80 W (CW) output power
- Pb-free and RoHS compliant

RF Characteristics

Two-carrier WCDMA Measurements (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=750 \mathrm{~mA}$, POUT $=20 \mathrm{~W}$ average, $f_{1}=2160 \mathrm{MHz}, f_{2}=2170 \mathrm{MHz}, 3 G P P$ signal, channel bandwidth $=3.84 \mathrm{MHz}$, peak/average $=8 \mathrm{~dB}$ @ 0.01% CCDF

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	$G_{p s}$	18	18.5	-	dB
Drain Efficiency	$\eta \mathrm{D}$	28	31	-	$\%$
Intermodulation Distortion	IMD	-	-30	-28	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10.0	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	0.05	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=750 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{GS}}$	2.3	3.0	3.3	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\left(\mathrm{T}_{\mathrm{CASE}}=70^{\circ} \mathrm{C}, 80 \mathrm{~W} \mathrm{CW}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	0.50	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Ordering Information

Type and Version	Order Code	Package Description	Shipping
PTFB210801FA V1 R0	PTFB210801FAV1R0XTMA1	H-37265-2, earless flange	Tape \& Reel, 50 pcs
PTFB210801FA V1 R250	PTFB210801FAV1R250XTMA1	H-37265-2, earless flange	Tape \& Reel, 250 pcs

Typical Performance (data taken in a production test fixture)

CW Performance vs. Temperature
$\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=750 \mathrm{~mA}, f=2140 \mathrm{MHz}$

Typical Performance (cont.)

Broadband Circuit Impedance

Z Load

Frequency	Z Source Ω		Z Load Ω	
$\mathbf{M H z}$	\mathbf{R}	$\mathbf{j X}$	\mathbf{R}	$\mathbf{j X}$
2110	16.3	-4.6	2.2	-4.1
2140	13.6	-4.0	2.3	-4.1
2170	11.3	-2.9	2.2	-4.4

Reference Circuit

Reference circuit input schematic for $f=2170 \mathrm{MHz}$

Reference circuit output schematic for $f=2170 \mathrm{MHz}$

Reference Circuit (cont.)

Description

DUT	PTFB210801FA
PCB	$0.508 \mathrm{~mm}[.020 "]$ thick, ε r $=3.66$, Rogers 4350, 1 oz. copper

Electrical Characteristics at $\mathbf{2 1 7 0} \mathbf{~ M H z}$

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
TL101, TL117	$0.023 \lambda, 35.71 \Omega$	$\mathrm{W} 1=1.905, \mathrm{~W} 2=1.905, \mathrm{~W} 3=1.905$	$\mathrm{W} 1=75, \mathrm{~W} 2=75, \mathrm{~W} 3=75$
TL102, TL115	$0.012 \lambda, 35.71 \Omega$	$\mathrm{W} 1=1.905, \mathrm{~W} 2=1.905, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=75, \mathrm{~W} 2=75, \mathrm{~W} 3=40$
TL103	$0.021 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.778$	W = 40, L = 70
TL104		$\begin{aligned} & \mathrm{W} 1=9.398, \mathrm{~W} 2=1.270, \mathrm{~W} 3=9.398, \\ & \mathrm{~W} 4=1.270 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=370, \mathrm{~W} 2=50, \mathrm{~W} 3=370, \\ & \mathrm{~W} 4=40 \end{aligned}$
TL105		$\mathrm{W} 1=1.024, \mathrm{~W} 2=9.398$	$\mathrm{W} 1=40, \mathrm{~W} 2=370$
TL106		W1 = 9.398, W2 = 9.398	$\mathrm{W} 1=370, \mathrm{~W} 2=370$
TL107	$0.050 \lambda, 53.93 \Omega$	$\mathrm{W}=1.024, \mathrm{~L}=4.153$	$\mathrm{W}=40, \mathrm{~L}=164$
TL108	$0.025 \lambda, 9.59 \Omega$	$\mathrm{W}=9.398, \mathrm{~L}=1.905$	$\mathrm{W}=370, \mathrm{~L}=75$
TL109	$0.019 \lambda, 53.93 \Omega$	$\mathrm{W}=1.024, \mathrm{~L}=1.605$	W = 40, L = 63
TL110	$0.092 \lambda, 53.93 \Omega$	$\mathrm{W}=1.024, \mathrm{~L}=7.696$	$\mathrm{W}=40, \mathrm{~L}=303$
TL111	$0.072 \lambda, 53.93 \Omega$	$\mathrm{W}=1.024, \mathrm{~L}=5.994$	$\mathrm{W}=40, \mathrm{~L}=236$
TL112	$0.011 \lambda, 53.93 \Omega$	$\mathrm{W} 1=1.024, \mathrm{~W} 2=1.024, \mathrm{~W} 3=0.889$	$\mathrm{W} 1=40, \mathrm{~W} 2=40, \mathrm{~W} 3=35$
TL113	$0.212 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=17.577$	$\mathrm{W}=50, \mathrm{~L}=692$
TL114, TL121	$0.039 \lambda, 47.12 \Omega$	W1 = 1.270, W2 = 1.270, W3 = 3.200	$\mathrm{W} 1=50, \mathrm{~W} 2=50, \mathrm{~W} 3=126$
TL116, TL122, TL123	$0.016 \lambda, 35.71 \Omega$	W1 $=1.905, \mathrm{~W} 2=1.905, \mathrm{~W} 3=1.270$	$\mathrm{W} 1=75, \mathrm{~W} 2=75, \mathrm{~W} 3=50$
TL118, TL120	$0.004 \lambda, 35.71 \Omega$	$\mathrm{W}=1.905, \mathrm{~L}=0.361$	$\mathrm{W}=75, \mathrm{~L}=14$
TL119	$0.021 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.778$	$\mathrm{W}=40, \mathrm{~L}=70$
TL124	$0.039 \lambda, 35.71 \Omega$	$\mathrm{W}=1.905, \mathrm{~L}=3.172$	$\mathrm{W}=75, \mathrm{~L}=125$
TL125	$0.048 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=4.013$	$\mathrm{W}=50, \mathrm{~L}=158$
TL126	$0.071 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=5.906$	$\mathrm{W}=50, \mathrm{~L}=233$
TL127, TL128	$0.005 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=0.406$	W = 50, L = 16
TL129		$\mathrm{W} 1=1.024, \mathrm{~W} 2=2.032$	$\mathrm{W} 1=40, \mathrm{~W} 2=80$
TL130, TL131	$0.012 \lambda, 34.08 \Omega$	$\mathrm{W}=2.032, \mathrm{~L}=1.016$	W = 80, L = 40
TL132		$\mathrm{W} 1=2.032, \mathrm{~W} 2=1.024$	$\mathrm{W} 1=80, \mathrm{~W} 2=40$

table continued on page 7

PTFB210801FA

Reference Circuit (cont.)

Electrical Characteristics at 2170 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Output			
TL201, TL203	$0.009 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=0.762$	W = 50, L= 30
TL202, TL204	$0.064 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=5.334$	$\mathrm{W}=50, \mathrm{~L}=210$
TL205, TL206		$\begin{aligned} & \mathrm{W} 1=1.905, \mathrm{~W} 2=2.540, \mathrm{~W} 3=1.905 \\ & \mathrm{~W} 4=2.540 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=75, \mathrm{~W} 2=100, \mathrm{~W} 3=75, \\ & \mathrm{~W} 4=100 \end{aligned}$
TL207		$\begin{aligned} \mathrm{W} 1 & =9.398, \mathrm{~W} 2=1.270, \mathrm{~W} 3=9.398 \\ \mathrm{~W} 4 & =1.270 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=370, \mathrm{~W} 2=50, \mathrm{~W} 3=370, \\ & \mathrm{~W} 4=50 \end{aligned}$
TL208, TL209		$\mathrm{W}=1.270$	$\mathrm{W}=50$
TL210		$\mathrm{W} 1=0.002, \mathrm{~W} 2=0.005$, Offset $=0.001$	$\mathrm{W} 1=2, \mathrm{~W} 2=184$, Offset $=55$
TL211, TL225	$0.172 \lambda, 17.67 \Omega$	$\mathrm{W}=4.674, \mathrm{~L}=13.564$	$\mathrm{W}=184, \mathrm{~L}=534$
TL212	$0.011 \lambda, 53.93 \Omega$	$\mathrm{W} 1=1.024, \mathrm{~W} 2=1.024, \mathrm{~W} 3=0.889$	W1 $=40, \mathrm{~W} 2=40, \mathrm{~W} 3=35$
TL213		$\begin{aligned} & \mathrm{W} 1=9.398, \mathrm{~W} 2=0.889, \mathrm{~W} 3=9.398 \\ & \mathrm{~W} 4=0.889 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=370, \mathrm{~W} 2=35, \mathrm{~W} 3=370, \\ & \mathrm{~W} 4=35 \end{aligned}$
TL214	$0.016 \lambda, 9.59 \Omega$	$\mathrm{W}=9.398, \mathrm{~L}=1.219$	W = 370, L = 48
TL215	$0.032 \lambda, 53.93 \Omega$	$\mathrm{W}=1.024, \mathrm{~L}=2.713$	$\mathrm{W}=40, \mathrm{~L}=107$
TL216	$0.185 \lambda, 53.93 \Omega$	$\mathrm{W}=1.024, \mathrm{~L}=15.491$	W = 40, L = 610
TL217, TL228	$0.002 \lambda, 35.71 \Omega$	$\mathrm{W} 1=1.905, \mathrm{~W} 2=1.905, \mathrm{~W} 3=0.127$	$\mathrm{W} 1=75, \mathrm{~W} 2=75, \mathrm{~W} 3=5$
TL218		$\mathrm{W} 1=9.398, \mathrm{~W} 2=9.398$	$\mathrm{W} 1=370, \mathrm{~W} 2=370$
TL219		$\mathrm{W} 1=1.024, \mathrm{~W} 2=9.398$	$\mathrm{W} 1=40, \mathrm{~W} 2=370$
TL220, TL227	$0.068 \lambda, 35.71 \Omega$	$\mathrm{W}=1.905, \mathrm{~L}=5.588$	$\mathrm{W}=75, \mathrm{~L}=220$
TL221, TL222	$0.016 \lambda, 35.71 \Omega$	$\mathrm{W} 1=1.905, \mathrm{~W} 2=1.905, \mathrm{~W} 3=1.270$	$\mathrm{W} 1=75, \mathrm{~W} 2=75, \mathrm{~W} 3=50$
TL223	$0.012 \lambda, 53.93 \Omega$	$\mathrm{W}=1.024, \mathrm{~L}=0.991$	$\mathrm{W}=40, \mathrm{~L}=39$
TL224	$0.011 \lambda, 9.59 \Omega$	$\mathrm{W}=9.398, \mathrm{~L}=0.813$	W = 370, L = 32
TL226		$\mathrm{W} 1=0.002, \mathrm{~W} 2=0.005$, Offset $=-0.001$	$\mathrm{W} 1=2, \mathrm{~W} 2=184$, Offset $=-55$

Reference Circuit (cont.)

Circuit Assembly Information

Test Fixture Part No. LTN/PTFB210801FA
Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower

Reference circuit assembly diagram (not to scale)

PTFB210801FA

Reference Circuit (cont.)

Components Information			
Component	Description	Suggested Manufacturer	P/N
Input			
C101, C103	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	490-4393-2-ND
C102, C105	Chip capacitor, 15 pF	ATC	800A150GT
C104	Chip capacitor, 1.5 pF	ATC	800A1T5GR
C801, C802, C803	Capacitor, 1000 pF	Digi-Key	PCC1772CT-ND
L1, L2	Inductor, 22 nH	Coilcraft	0805CS-220X_BG
R101, R103, R104	Resistor, 10Ω	Digi-Key	P10GCT-ND
R102, R804	Resistor, 2000Ω	Digi-Key	P2.0KECT-ND
R801	Resistor, 3000Ω	Digi-Key	P3.0KECT-ND
R802	Resistor, 1300Ω	Digi-Key	P1.3KGECT-ND
R803	Resistor, 1200Ω	Digi-Key	P1.2KGECT-ND
S1, S2	EMI Suppression Capacitor	Digi-Key	NFM18PS105R0J3D
S3	Potentiometer, $2 \mathrm{k} \Omega$	Digi-Key	3224W-202ECT-ND
S4	Voltage Regulator	Digi-Key	LM7805
S5	Transistor	Digi-Key	BCP56
Output			
C201, C203	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	587-1818-2-ND
C202, C211	Chip capacitor, $4.71 \mu \mathrm{~F}$	ATC	490-1864-2-ND
C204, C212	Chip capacitor, 18 pF	ATC	800A180JT
C205, C210	Capacitor, $22 \mu \mathrm{~F}$	Digi-Key	PCE4444TR-ND
C206, C207	Chip capacitor, 2.7 pF	ATC	800A2R7BT
C208	Chip capacitor, 2.2 pF	ATC	800A2R2BT
C209	Chip capacitor, 15 pF	ATC	800A150GT

Package Outline Specifications

Package H-37265-2

Diagram Notes—unless otherwise specified:

1. Interpret dimensions and tolerances per ASME Y14.5M-1994.
2. Primary dimensions are mm . Alternate dimensions are inches.
3. All tolerances ± 0.127 [.005] unless specified otherwise.
4. Pins: $\mathrm{D}=$ drain, $\mathrm{S}=$ source, $\mathrm{G}=$ gate.
5. Lead thickness: $0.10+0.051 /-0.025$ [. $004+.002 /-.001]$.
6. Exposed metal plane on top and bottom of ceramic insulator.
7. Gold plating thickness: 1.14 ± 0.38 micron [45 ± 15 microinch]

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

PTFB210801FA V1

Revision History

Revision	Date	Data Sheet Type	Page	Subjects (major changes since last revision)
01	$2011-03-30$	Production	All	Data Sheet reflects advance specification for product development
01.1	$2016-06-14$	Production	2	Updated ordering information

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
highpowerRF@infineon.com
To request other information, contact us at: +1 8774653667 (1-877-GO-LDMOS) USA or +14087760600 International

Edition 2016-06-14

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

